Popis: |
Semantic Web and Web2.0 emerged during the past decade promising to achieve new frontiers for the Web. On the one hand, the Semantic Web is an interlinked web of data, supported by ontological semantics and allowing for intelligent applications such as semantic search and integration of heterogeneous content across systems and applications. On the other hand, Web2.0 represents the new technologies and paradigms that revolutionised the user engagement in content creation and introduced novel means towards social interaction. Bridging the gap between Web2.0 and the Semantic Web has been proposed as a means to better manage and interact with the large amounts of user contributed content, which is a new challenge for Web2.0. This thesis focuses on a popular paradigm of Web2.0, folksonomies. In particular, we investigate the semantic enrichment of folksonomy tagspaces by reusing ontologies available in the Semantic Web. We identify the need for methods that automatically apply semantic descriptions to user generated content without requiring user intervention or alteration of the current tagging paradigm. We use an iterative approach in order to identify the characteristics of folksonomies and the attributes of knowledge sources that influence the semantic enrichment of tagspaces. We build on the results of our experimental studies to implement a folksonomy enrichment algorithm, that given an input tagspace, automatically creates a semantic structure that describes the meaning and relations of tags. We introduce measures for the evaluation of enriched tagspaces and finally, we propose a search algorithm that exploits the semantic structures to improve folksonomy search. |