Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome
Autor: | Henon Hilde, Kuchcinski Gregory, Coutureau Juliette, Tourdias Thomas, Asselineau Julien, Perez Paul, Bordet Regis, Renou Pauline, Sibon Igor, Munsch Fanny, Sagnier Sharmila, Lopes Renaud, Dousset Vincent |
---|---|
Přispěvatelé: | CHU Bordeaux [Bordeaux], Université de Bordeaux (UB), CHU Lille, Université de Lille, Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 (TCDV), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut de Neurosciences cognitives et intégratives d'Aquitaine (INCIA), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-SFR Bordeaux Neurosciences-Centre National de la Recherche Scientifique (CNRS), Harvard Medical School [Boston] (HMS), Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale (U1215 Inserm - UB), Université de Bordeaux (UB)-Institut François Magendie-Institut National de la Santé et de la Recherche Médicale (INSERM), Agence Régionale de Santé Hauts-de-France, Ministère de la Santé, ANR-10-LABX-0057,TRAIL,Translational Research and Advanced Imaging Laboratory(2010), Troubles cognitifs dégénératifs et vasculaires - U 1171 (TCDV), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Admin, Oskar, Translational Research and Advanced Imaging Laboratory - - TRAIL2010 - ANR-10-LABX-0057 - LABX - VALID |
Rok vydání: | 2020 |
Předmět: |
Male
medicine.medical_specialty Databases Factual Disease Stroke onset Text mining Atrophy Predictive Value of Tests Internal medicine Stroke outcome medicine Humans [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Aged Aged 80 and over business.industry Cognition Odds ratio Middle Aged medicine.disease Magnetic Resonance Imaging Stroke Treatment Outcome Cerebral Small Vessel Diseases Cardiology [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Female Neurology (clinical) Small vessel business Follow-Up Studies |
Zdroj: | Neurology Neurology, 2021, 96 (4), pp.e527-e537. ⟨10.1212/WNL.0000000000011208⟩ |
ISSN: | 1526-632X 0028-3878 |
DOI: | 10.1212/WNL.0000000000011208⟩ |
Popis: | ObjectiveTo determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in patients with stroke.MethodsWhite matter hyperintensity, lacunes, perivascular spaces, microbleeds, and atrophy were quantified in 2 prospective datasets of 428 and 197 patients with first-ever stroke, using MRI collected 24 to 72 hours after stroke onset. Functional, cognitive, and psychological status were assessed at the 3- to 6-month follow-up. The predictive accuracy (in terms of calibration and discrimination) of age, baseline NIH Stroke Scale score (NIHSS), and infarct volume was quantified (model 1) on dataset 1, the total SVD score was added (model 2), and the improvement in predictive accuracy was evaluated. These 2 models were also developed in dataset 2 for replication. Finally, in model 3, the MRI features of cerebral SVD were included rather than the total SVD score.ResultsModel 1 showed excellent performance for discriminating poor vs good functional outcomes (area under the curve [AUC] 0.915), and fair performance for identifying cognitively impaired and depressed patients (AUCs 0.750 and 0.688, respectively). A higher SVD score was associated with a poorer outcome (odds ratio 1.30 [1.07–1.58], p = 0.0090 at best for functional outcome). However, adding the total SVD score (model 2) or individual MRI features (model 3) did not improve the prediction over model 1. Results for dataset 2 were similar.ConclusionsCerebral SVD was independently associated with functional, cognitive, and psychological outcomes, but had no clinically relevant added value to predict the individual outcomes of patients when compared to the usual predictors, such as age and baseline NIHSS. |
Databáze: | OpenAIRE |
Externí odkaz: |