Furan- and Thiophene-Based Auxochromes Red-shift Chlorin Absorptions and Enable Oxidative Chlorin Polymerizations
Autor: | Ruisheng Xiong, Anna I. Arkhypchuk, Anna-Bea Bornhof, K. Eszter Borbas, Andreas Orthaber |
---|---|
Rok vydání: | 2017 |
Předmět: |
chlorins
Porphyrinoids porphyrinoids Oxidative phosphorylation 010402 general chemistry Photochemistry 01 natural sciences Catalysis chemistry.chemical_compound Furan Thiophene photophysics Organisk kemi Full Paper 010405 organic chemistry Auxochrome Organic Chemistry General Chemistry Full Papers 0104 chemical sciences Red shift electrochemistry chemistry polymerization Chlorin |
Zdroj: | Chemistry (Weinheim an Der Bergstrasse, Germany) |
ISSN: | 0947-6539 |
DOI: | 10.1002/chem.201604655 |
Popis: | The de novo syntheses of chemically stable chlorins with five‐membered heterocyclic (furane, thiophene, formylfurane and formylthiophene) substituents in selected meso‐ and β‐positions are reported. Heterocycle incorporation in the 3‐ and 13‐positions shifted the chlorin absorption and emission to the red (up to λ em=680 nm), thus these readily incorporated substituents function analogously to auxochromes present in chlorophylls, for example, formyl and vinyl groups. Photophysical, theoretical and X‐ray crystallographic experiments revealed small but significant differences between the behavior of the furan‐ and the thiophene‐based auxochromes. Four regioisomeric bis‐thienylchlorins (3,10; 3,13, 3,15 and 10,15) were oxidatively electropolymerized; the chlorin monomer geometry had a profound impact on the polymerization efficiency and the electrochemical properties of the resulting material. Chemical co‐polymerization of 3,13‐bis‐thienylchlorin with 3‐hexylthiophene yielded an organic‐soluble red‐emitting polymer. |
Databáze: | OpenAIRE |
Externí odkaz: |