The symplectic area of a geodesic triangle in a Hermitian symmetric space of compact type
Autor: | Jean-Louis Clerc, Mads Aunskjær Bech, Bent Ørsted |
---|---|
Přispěvatelé: | Clerc, Jean-Louis, Institut for Matematiske Fag (IMF), Aarhus University [Aarhus], Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Mathematics - Differential Geometry
Geodesic geodesic triangle General Mathematics Mathematics::Number Theory Mathematics::Classical Analysis and ODEs Type (model theory) Computer Science::Computational Geometry 01 natural sciences Omega Combinatorics Mathematics::Algebraic Geometry Kahler form Computer Science::Discrete Mathematics 0103 physical sciences FOS: Mathematics Physics::Atomic Physics 0101 mathematics [MATH]Mathematics [math] ComputingMilieux_MISCELLANEOUS Mathematics Hermitian symmetric space automorphy kernel 010308 nuclear & particles physics 010102 general mathematics [MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV] Surface (topology) Differential Geometry (math.DG) Computational Theory and Mathematics [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] compact Hermitian symmetric space Statistics Probability and Uncertainty [MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] 2010 MSC : 32M15 53C55 57T15 Symplectic geometry |
Zdroj: | São Paulo Journal of Mathematical Sciences São Paulo Journal of Mathematical Sciences, Springer, 2018, 12 (2), pp.174-195. ⟨10.1007/s40863-018-0099-7⟩ |
ISSN: | 1982-6907 2316-9028 |
DOI: | 10.1007/s40863-018-0099-7⟩ |
Popis: | Let M be an irreducible Hermitian symmetric space of compact type, and let $$\omega $$ be its Kahler form. For a triplet $$(p_1,p_2,p_3)$$ of points in M we study conditions under which a geodesic triangle $$\mathcal T(p_1,p_2,p_3)$$ with vertices $$p_1,p_2,p_3$$ can be unambiguously defined. We consider the integral $$A(p_1,p_2,p_3)=\int _\Sigma \omega $$ , where $$\Sigma $$ is a surface filling the triangle $$\mathcal T(p_1,p_2,p_3)$$ and discuss the dependence of $$A(p_1,p_2,p_3)$$ on the surface $$\Sigma $$ . Under mild conditions on the three points, we prove an explicit formula for $$A(p_1,p_2,p_3)$$ analogous to the known formula for the symplectic area of a geodesic triangle in a non-compact Hermitian symmetric space. |
Databáze: | OpenAIRE |
Externí odkaz: |