A Bayesian Approach to Linear Unmixing in the Presence of Highly Mixed Spectra

Autor: Santiago Velasco-Forero, Jesús Angulo, Michel Bilodeau, Bruno Figliuzzi
Přispěvatelé: Centre de Morphologie Mathématique (CMM), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Jacques Blanc-Talon, Cosimo Distante, Wilfried Philips, Dan Popescu, Paul Scheunders
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Advanced Concepts for Intelligent Vision Systems: 17th International Conference, ACIVS 2016
Advanced Concepts for Intelligent Vision Systems: 17th International Conference, ACIVS 2016, Oct 2016, Leecy, Italy. pp.263--274, ⟨10.1007/978-3-319-48680-2_24⟩
Advanced Concepts for Intelligent Vision Systems ISBN: 9783319486796
ACIVS
DOI: 10.1007/978-3-319-48680-2_24⟩
Popis: International audience; In this article, we present a Bayesian algorithm for endmember extraction and abundance estimation in situations where prior information is available for the abundances. The algorithm is considered within the framework of the linear mixing model. The novelty of this work lies in the introduction of bound parameters which allow us to introduce prior information on the abundances. The estimation of these bound parameters is performed using a simulated annealing algorithm. The algorithm is illustrated by simulations conducted on synthetic AVIRIS spectra and on the SAMSON dataset.
Databáze: OpenAIRE