On the fifth Whitney cone of a complex analytic curve
Autor: | Arturo Giles Flores, Otoniel Nogueira Silva, Jawad Snoussi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | From a procedure to calculate the $C_5$-cone of a reduced complex analytic curve $X \subset \mathbb{C}^n$ at a singular point $0 \in X$, we extract a collection of integers that we call {\it auxiliary multiplicities} and we prove they characterize the Lipschitz type of complex curve singularities. We then use them to improve the known bounds for the number of irreducible components of the $C_5$-cone. We finish by giving an example showing that in a Lipschitz equisingular family of curves the number of planes in the $C_5$-cone may not be constant. |
Databáze: | OpenAIRE |
Externí odkaz: |