Use of a modified GreenScreen tool to conduct a screening-level comparative hazard assessment of conventional silver and two forms of nanosilver
Autor: | Jennifer Sass, Lauren Heine, Nina Hwang |
---|---|
Rok vydání: | 2016 |
Předmět: |
Silver
Computer science Health Toxicology and Mutagenesis Metal Nanoparticles 02 engineering and technology Certification 010501 environmental sciences Hazard analysis Risk Assessment 01 natural sciences Hazardous Substances Toxicology Alternative assessment Toxic chemicals Procurement Animals Humans Nanotechnology Nanomaterials 0105 earth and related environmental sciences Product design Antimicrobials Methodology Public Health Environmental and Occupational Health Chemical Safety 021001 nanoscience & nanotechnology Hazard Anti-Bacterial Agents Chemical hazard Risk analysis (engineering) Work (electrical) Hazard assessment Nanosilver 0210 nano-technology |
Zdroj: | Environmental Health |
ISSN: | 1476-069X |
DOI: | 10.1186/s12940-016-0188-y |
Popis: | Background Increased concern for potential health and environmental impacts of chemicals, including nanomaterials, in consumer products is driving demand for greater transparency regarding potential risks. Chemical hazard assessment is a powerful tool to inform product design, development and procurement and has been integrated into alternative assessment frameworks. The extent to which assessment methods originally designed for conventionally-sized materials can be used for nanomaterials, which have size-dependent physical and chemical properties, have not been well established. We contracted with a certified GreenScreen profiler to conduct three GreenScreen hazard assessments, for conventional silver and two forms of nanosilver. The contractor summarized publicly available literature, and used defined GreenScreen hazard criteria and expert judgment to assign and report hazard classification levels, along with indications of confidence in those assignments. Where data were not available, a data gap (DG) was assigned. Using the individual endpoint scores, an aggregated benchmark score (BM) was applied. Results Conventional silver and low-soluble nanosilver were assigned the highest possible hazard score and a silica-silver nanocomposite called AGS-20 could not be scored due to data gaps. AGS-20 is approved for use as antimicrobials by the US Environmental Protection Agency. Conclusions An existing method for chemical hazard assessment and communication can be used – with minor adaptations– to compare hazards across conventional and nano forms of a substance. The differences in data gaps and in hazard profiles support the argument that each silver form should be considered unique and subjected to hazard assessment to inform regulatory decisions and decisions about product design and development. A critical limitation of hazard assessments for nanomaterials is the lack of nano-specific hazard data – where data are available, we demonstrate that existing hazard assessment systems can work. The work is relevant for risk assessors and regulators. We recommend that regulatory agencies and others require more robust data sets on each novel nanomaterial before granting market approval. Electronic supplementary material The online version of this article (doi:10.1186/s12940-016-0188-y) contains supplementary material, which is available to authorized users. |
Databáze: | OpenAIRE |
Externí odkaz: |