Contour Methods for Long-Range Ising Models: Weakening Nearest-Neighbor Interactions and Adding Decaying Fields
Autor: | Aernout C. D. van Enter, Eric O. Endo, Bruno Kimura, Rodrigo Bissacot, Wioletta M. Ruszel |
---|---|
Přispěvatelé: | Dynamical Systems, Geometry & Mathematical Physics, High-Energy Frontier |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
Nuclear and High Energy Physics Phase transition Range (particle radiation) POTTS MODELS 010102 general mathematics Zero (complex analysis) FOS: Physical sciences Statistical and Nonlinear Physics LATTICE MODELS FÍSICA MATEMÁTICA Mathematical Physics (math-ph) FERROMAGNET 01 natural sciences EXTERNAL FIELDS k-nearest neighbors algorithm Contour analysis 0103 physical sciences PHASE-TRANSITION TREES Ising model 010307 mathematical physics 0101 mathematics Mathematical Physics Mathematical physics |
Zdroj: | Annales Henri Poincaré, 19(8), 2557-2574. Springer International Publishing AG Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 1424-0637 |
Popis: | We consider ferromagnetic long-range Ising models which display phase transitions. They are long-range one-dimensional Ising ferromagnets, in which the interaction is given by $J_{x,y} = J(|x-y|)\equiv \frac{1}{|x-y|^{2-\alpha}}$ with $\alpha \in [0, 1)$, in particular, $J(1)=1$. For this class of models one way in which one can prove the phase transition is via a kind of Peierls contour argument, using the adaptation of the Fr\"ohlich-Spencer contours for $\alpha \neq 0$, proposed by Cassandro, Ferrari, Merola and Presutti. As proved by Fr\"ohlich and Spencer for $\alpha=0$ and conjectured by Cassandro et al for the region they could treat, $\alpha \in (0,\alpha_{+})$ for $\alpha_+=\log(3)/\log(2)-1$, although in the literature dealing with contour methods for these models it is generally assumed that $J(1)\gg1$, we can show that this condition can be removed in the contour analysis. In addition, combining our theorem with a recent result of Littin and Picco we prove the persistence of the contour proof of the phase transition for any $\alpha \in [0,1)$. Moreover, we show that when we add a magnetic field decaying to zero, given by $h_x= h_*\cdot(1+|x|)^{-\gamma}$ and $\gamma >\max\{1-\alpha, 1-\alpha^* \}$ where $\alpha^*\approx 0.2714$, the transition still persists. Comment: 13 pages |
Databáze: | OpenAIRE |
Externí odkaz: |