POISSON LIKE MATRIX OPERATOR AND ITS APPLICATION IN p-SUMMABLE SPACE
Autor: | Bipan Hazarika, Taja Yaying, Mohammad Mursaleen, Merve İlkhan |
---|---|
Přispěvatelé: | [Belirlenecek] |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Euler Sequence-Spaces Compactness General Mathematics Hausdorff Measure incomplete gamma function matrix transformations Noncompactness Poisson matrix Include L(P) Poisson distribution Space (mathematics) geometric properties Binomial Difference Operator symbols.namesake symbols spectrum of matrix operator Matrix operator Mathematics compact operators |
Popis: | The incomplete gamma function Γ(a, u) is defined by Γ ( a , u ) = ∫ u ∞ t a − 1 e − t d t , $$\Gamma(a,u)=\int\limits_{u}^{\infty}t^{a-1}\textrm{e}^{-t}\textrm{d} t,$$ where u > 0. Using the incomplete gamma function, we define a new Poisson like regular matrix P ( μ ) = ( p n k μ ) $\mathfrak{P}(\mu)=(p^{\mu}_{nk})$ given by p n k μ = n ! Γ ( n + 1 , μ ) e − μ μ k k ! ( 0 ≤ k ≤ n ) , 0 ( k > n ) , $$p^{\mu}_{nk}= \begin{cases} \dfrac{n!}{\Gamma(n+1,\mu)}\dfrac{\textrm{e}^{-\mu}\mu^k}{k!} \quad &(0\leq k\leq n), \\[1ex] 0\quad & (k>n), \end{cases}$$ where μ > 0 is fixed. We introduce the sequence space ℓ p ( P ( μ ) ) $\ell_p(\mathfrak{P}(\mu))$ for 1 ≤ p ≤ ∞ and some topological properties, inclusion relations and generalized duals of the newly defined space are discussed. Also we characterize certain matrix classes and compact operators related to the space ℓ p ( P ( μ ) ) $\ell_p(\mathfrak{P}(\mu))$ . We obtain Gurarii’s modulus of convexity and investigate some geometric properties of the new space. Finally, spectrum of the operator P ( μ ) $\mathfrak{P}(\mu)$ on sequence space c 0 has been investigated. |
Databáze: | OpenAIRE |
Externí odkaz: |