Decay of Correlations in 2D Quantum Systems with Continuous Symmetry
Autor: | Daniel Ueltschi, Juerg Froehlich, Costanza Benassi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Large class
Physics G100 Nuclear and High Energy Physics F300 010102 general mathematics FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) 01 natural sciences Theoretical physics Continuous symmetry Lattice (order) 0103 physical sciences Homogeneous space 0101 mathematics Algebraic number 010306 general physics Quantum QC Mathematical Physics |
Zdroj: | Annales Henri Poincaré, 18 (9) |
ISSN: | 1424-0661 1424-0637 |
Popis: | We study a large class of models of two-dimensional quantum lattice systems with continuous symmetries, and we prove a general McBryan–Spencer–Koma–Tasaki theorem concerning algebraic decay of correlations. We present applications of our main result to the Heisenberg, Hubbard, and t-J models, and to certain models of random loops. Annales Henri Poincaré, 18 (9) ISSN:1424-0661 ISSN:1424-0637 |
Databáze: | OpenAIRE |
Externí odkaz: |