Reduction in non-(k+ 1)-power-free morphisms
Autor: | Francis Wlazinski |
---|---|
Přispěvatelé: | Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
General Mathematics 0211 other engineering and technologies Quasi-finite morphism 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology 01 natural sciences Finite morphism Computer Science Applications Combinatorics Lift (mathematics) Mathematics::Algebraic Geometry Morphism [INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] 010201 computation theory & mathematics Zero morphism Mathematics::Category Theory TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS Software Mathematics |
Zdroj: | RAIRO - Theoretical Informatics and Applications. 50:3-20 |
ISSN: | 1290-385X 0988-3754 |
DOI: | 10.1051/ita/2016006 |
Popis: | Under some hypotheses, if the image by a morphism of a (k+ 1)-power-free word contains a (k+ 1)-power, we can reduce this word to obtain a new word with the same scheme. These hypotheses are satisfied in the case of uniform morphisms. This allows us to state that, whenk≥ 4, ak-power-free uniform morphism is a (k+ 1)-power-free morphism. |
Databáze: | OpenAIRE |
Externí odkaz: |