Acoustic boundary layers as boundary conditions
Autor: | Daniel Noreland, Martin Berggren, Anders Bernland |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
Numerical Analysis Physics and Astronomy (miscellaneous) Helmholtz equation Applied Mathematics Mathematics::Analysis of PDEs Boundary (topology) Computational mathematics FOS: Physical sciences Mechanics Computational Physics (physics.comp-ph) 01 natural sciences 010305 fluids & plasmas Computer Science Applications Physics::Fluid Dynamics Computational Mathematics Acoustic wave propagation Computer Science::Sound Modeling and Simulation 0103 physical sciences Thermal Compressibility Boundary value problem 010301 acoustics Physics - Computational Physics |
Popis: | The linearized, compressible Navier-Stokes equations can be used to model acoustic wave propagation in the presence of viscous and thermal boundary layers. However, acoustic boundary layers are notorious for invoking prohibitively high resolution requirements on numerical solutions of the equations. We derive and present a strategy for how viscous and thermal boundary-layer effects can be represented as a boundary condition on the standard Helmholtz equation for the acoustic pressure. This boundary condition constitutes an $O(\delta)$ perturbation, where $\delta$ is the boundary-layer thickness, of the vanishing Neumann condition for the acoustic pressure associated with a lossless sound-hard wall. The approximate model is valid when the wavelength and the minimum radius of curvature of the wall is much larger than the boundary layer thickness. In the special case of sound propagation in a cylindrical duct, the model collapses to the classical Kirchhoff solution. We assess the model in the case of sound propagation through a compression driver, a kind of transducer that is commonly used to feed horn loudspeakers. Due to the presence of shallow chambers and thin slits in the device, it is crucial to include modeling of visco-thermal losses in the acoustic analysis. The transmitted power spectrum through the device calculated numerically using our model agrees well with computations using a hybrid model, where the full linearized, compressible Navier-Stokes equations are solved in the narrow regions of the device and the inviscid Helmholtz equations elsewhere. However, our model needs almost two orders of magnitude less memory and computational time than the more complete model. |
Databáze: | OpenAIRE |
Externí odkaz: |