Convergence of Hippocampal Pathophysiology inSyngap+/−andFmr1−/yMice
Autor: | U. Valentin Nägerl, Emily K. Osterweil, Lasani S. Wijetunge, Noboru H. Komiyama, Danai Katsanevaki, Seth G. N. Grant, Peter C. Kind, David J. A. Wyllie, Stephanie A. Barnes, Adam D. Jackson, Mark F. Bear |
---|---|
Rok vydání: | 2015 |
Předmět: |
Male
Dendritic spine Dendritic Spines Mice Transgenic SYNGAP1 Biology Hippocampus Fragile X Mental Retardation Protein Mice Organ Culture Techniques Neurodevelopmental disorder medicine Animals Mice Knockout Phenocopy General Neuroscience Excitatory Postsynaptic Potentials Articles medicine.disease FMR1 Mice Inbred C57BL Fragile X syndrome ras GTPase-Activating Proteins Metabotropic glutamate receptor Haploinsufficiency Neuroscience |
Zdroj: | Barnes, S A, Wijetunge, L S, Jackson, A D, Katsanevaki, D, Osterweil, E K, Komiyama, N H, Grant, S G N, Bear, M F, Nägerl, U V, Kind, P C & Wyllie, D J A 2015, ' Convergence of hippocampal pathophysiology in Syngap +/-and Fmr1-/y mice ', Journal of Neuroscience, vol. 35, no. 45, pp. 15073-15081 . https://doi.org/10.1523/JNEUROSCI.1087-15.2015 |
ISSN: | 1529-2401 0270-6474 |
Popis: | Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen in the human condition (i.e., have structural validity) and which produce phenotypes that mirror ID/ASDs (i.e., have face validity). We show that SynGAP haploinsufficiency, which causes ID with co-occurring ASD in humans, mimics and occludes the synaptic pathophysiology associated with deletion of theFmr1gene.Syngap+/−andFmr1−/ymice show increases in basal protein synthesis and metabotropic glutamate receptor (mGluR)-dependent long-term depression that, unlike in their wild-type controls, is independent of new protein synthesis. Basal levels of phosphorylated ERK1/2 are also elevated inSyngap+/−hippocampal slices. Super-resolution microscopy reveals thatSyngap+/−andFmr1−/ymice show nanoscale alterations in dendritic spine morphology that predict an increase in biochemical compartmentalization. Finally, increased basal protein synthesis is rescued by negative regulators of the mGlu subtype 5 receptor and the Ras–ERK1/2 pathway, indicating that therapeutic interventions for fragile X syndrome may benefit patients with SYNGAP1 haploinsufficiency.SIGNIFICANCE STATEMENTAs the genetics of intellectual disability (ID) and autism spectrum disorders (ASDs) are unraveled, a key issue is whether genetically divergent forms of these disorders converge on common biochemical/cellular pathways and hence may be amenable to common therapeutic interventions. This study compares the pathophysiology associated with the loss of fragile X mental retardation protein (FMRP) and haploinsufficiency of synaptic GTPase-activating protein (SynGAP), two prevalent monogenic forms of ID. We show thatSyngap+/−mice phenocopyFmr1−/ymice in the alterations in mGluR-dependent long-term depression, basal protein synthesis, and dendritic spine morphology. Deficits in basal protein synthesis can be rescued by pharmacological interventions that reduce the mGlu5receptor–ERK1/2 signaling pathway, which also rescues the same deficit inFmr1−/ymice. Our findings support the hypothesis that phenotypes associated with genetically diverse forms of ID/ASDs result from alterations in common cellular/biochemical pathways. |
Databáze: | OpenAIRE |
Externí odkaz: |