A-to-I editing of Malacoherpesviridae RNAs supports the antiviral role of ADAR1 in mollusks
Autor: | Stefania Domeneghetti, Chongming Wang, Lorenzo Maso, Miriam Abbadi, Laura Cendron, Umberto Rosani, Maxwell Shapiro, Thomas MacCarthy, Changming Bai, Paola Venier |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Models
Molecular 0106 biological sciences 0301 basic medicine RNA editing 01 natural sciences Genome chemistry.chemical_compound Oysters A-to-I editing ADAR AbHV-1 Abalones Antiviral responses Malacoherpesvirus Mollusks OsHV-1 Nucleotide Phylogeny Genetics chemistry.chemical_classification Phylogenetic tree RNA-Binding Proteins RNA Viral Research Article medicine.drug Evolution Genome Viral Biology Antiviral Agents Polymorphism Single Nucleotide 010603 evolutionary biology 03 medical and health sciences Protein Domains medicine QH359-425 Animals Inosine Ecology Evolution Behavior and Systematics DNA Viruses RNA Bayes Theorem 030104 developmental biology Gene Expression Regulation chemistry Mollusca Transcriptome DNA |
Zdroj: | BMC Evolutionary Biology, Vol 19, Iss 1, Pp 1-18 (2019) BMC Evolutionary Biology EPIC3BMC Evolutionary Biology, 19(1), ISSN: 1471-2148 |
ISSN: | 1471-2148 |
Popis: | Background Adenosine deaminase enzymes of the ADAR family are conserved in metazoans. They convert adenine into inosine in dsRNAs and thus alter both structural properties and the coding potential of their substrates. Acting on exogenous dsRNAs, ADAR1 exerts a pro- or anti-viral role in vertebrates and Drosophila. Results We traced 4 ADAR homologs in 14 lophotrochozoan genomes and we classified them into ADAD, ADAR1 or ADAR2, based on phylogenetic and structural analyses of the enzymatic domain. Using RNA-seq and quantitative real time PCR we demonstrated the upregulation of one ADAR1 homolog in the bivalve Crassostrea gigas and in the gastropod Haliotis diversicolor supertexta during Ostreid herpesvirus-1 or Haliotid herpesvirus-1 infection. Accordingly, we demonstrated an extensive ADAR-mediated editing of viral RNAs. Single nucleotide variation (SNV) profiles obtained by pairing RNA- and DNA-seq data from the viral infected individuals resulted to be mostly compatible with ADAR-mediated A-to-I editing (up to 97%). SNVs occurred at low frequency in genomic hotspots, denoted by the overlapping of viral genes encoded on opposite DNA strands. The SNV sites and their upstream neighbor nucleotide indicated the targeting of selected adenosines. The analysis of viral sequences suggested that, under the pressure of the ADAR editing, the two Malacoherpesviridae genomes have evolved to reduce the number of deamination targets. Conclusions We report, for the first time, evidence of an extensive editing of Malacoherpesviridae RNAs attributable to host ADAR1 enzymes. The analysis of base neighbor preferences, structural features and expression profiles of molluscan ADAR1 supports the conservation of the enzyme function among metazoans and further suggested that ADAR1 exerts an antiviral role in mollusks. Electronic supplementary material The online version of this article (10.1186/s12862-019-1472-6) contains supplementary material, which is available to authorized users. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |