Modeling and Simulation of a Point to Point Spherical Articulated Manipulator using Optimal Control

Autor: R. N. Ponnalagu, Prathamesh Saraf
Rok vydání: 2020
Předmět:
Zdroj: ICARA
DOI: 10.48550/arxiv.2010.13574
Popis: This paper aims to design an optimal stability controller for a point to point trajectory tracking 3 degree of freedom articulated manipulator. The DH convention is used to obtain the forward and inverse kinematics of the manipulator. The manipulator dynamics are formulated using the Lagrange Euler method to obtain a nonlinear system. The complicated nonlinear equations obtained are then linearized in order to implement the optimal LQR. The simulations are performed in MATLAB and Simulink and the optimal controllers performance is tested for various conditions and the results are presented. The results obtained prove the superiority of LQR over conventional PID control.
Comment: 5 pages
Databáze: OpenAIRE