Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes
Autor: | Patrick Willems, Marrit Peeters, Bram Slabbinck, Jan Van de Velde, Debbie Rombaut, Mieke Van Lijsebettens, Klaas Vandepoele, Marc De Block, Aurine Verkest, Evi Standaert, Marina Byzova, Frank Van Breusegem, Cindy Martens, Tom Verwulgen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
food.ingredient
Physiology Drought tolerance Plant Science Biology Transcriptome EPIGENETIC MUTATION food PROBE LEVEL DATA Genetics Epigenetics Canola Gene HISTONE H3 Epigenomics GENE-EXPRESSION SEQUENCE-ANALYSIS food and beverages Biology and Life Sciences Epigenome ABSCISIC-ACID Phenotype OSMOTIC-STRESS ARABIDOPSIS-THALIANA MODEL DATA-ANALYSIS H3 LYSINE 4 |
Zdroj: | PLANT PHYSIOLOGY |
ISSN: | 0032-0889 1532-2548 |
Popis: | To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency, drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance. Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding. |
Databáze: | OpenAIRE |
Externí odkaz: |