Risk-Averse Stochastic Optimal Control: an efficiently computable statistical upper bound
Autor: | Vincent Guigues, Alexander Shapiro, Yi Cheng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | In this paper, we discuss an application of the SDDP type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of research. The bound holds for a large class of convex and monotone conditional risk mappings. Finally, we show the validity of the statistical upper bound to solve a real-life stochastic hydro-thermal planning problem. |
Databáze: | OpenAIRE |
Externí odkaz: |