Precision calculation of critical exponents in the $O(N)$ universality classes with the nonperturbative renormalization group

Autor: Gonzalo De Polsi, Matthieu Tissier, Nicolás Wschebor, Ivan Balog
Přispěvatelé: Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
O(N) model
critical behavior
functional renormalization group

Monte Carlo method
FOS: Physical sciences
expansion: derivative
01 natural sciences
010305 fluids & plasmas
O(2)
Error bar
0103 physical sciences
Statistical physics
universality
renormalization group: nonperturbative
010306 general physics
Condensed Matter - Statistical Mechanics
Physics
Specific heat
Statistical Mechanics (cond-mat.stat-mech)
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Statistical Physics
higher-order: 2
Renormalization group
O(N)
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
Universality (dynamical systems)
High Energy Physics - Theory (hep-th)
Exponent
Ising model
specific heat
numerical calculations: Monte Carlo
Critical exponent
Zdroj: Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (4), pp.042113. ⟨10.1103/PhysRevE.101.042113⟩
ISSN: 1539-3755
1550-2376
DOI: 10.1103/PhysRevE.101.042113⟩
Popis: We compute the critical exponents $\nu$, $\eta$ and $\omega$ of $O(N)$ models for various values of $N$ by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted $\mathcal{O}(\partial^4)$]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter -- typically between $1/9$ and $1/4$ -- compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field theoretical techniques. We also reach a better precision than Monte-Carlo simulations in some physically relevant situations. In the $O(2)$ case, where there is a longstanding controversy between Monte-Carlo estimates and experiments for the specific heat exponent $\alpha$, our results are compatible with those of Monte-Carlo but clearly exclude experimental values.
Databáze: OpenAIRE