On separate chemical freeze-outs of hadrons and light (anti)nuclei in high energy nuclear collisions
Autor: | Sonia Kabana, A. I. Ivanytskyi, Denys Savchenko, Kyrill A. Bugaev, David Blaschke, Arkadiy Taranenko, E. G. Nikonov, Larissa Bravina, V. V. Sagun, Evgeny Zabrodin, B. E. Grinyuk, Gennady Zinovjev |
---|---|
Přispěvatelé: | Université de Nantes (UN), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
History
hadron: resonance: gas heavy ion: scattering Proton Hadron nucleus: energy gas: model Nuclear Theory FOS: Physical sciences 01 natural sciences Resonance (particle physics) freeze-out: chemical Education Surface tension Nuclear physics High Energy Physics - Phenomenology (hep-ph) ALICE surface tension 0103 physical sciences freeze-out: temperature 010306 general physics Nuclear Experiment Physics SIMPLE (dark matter experiment) energy: high 010308 nuclear & particles physics antibaryon nucleon temperature: high Radius hadron: resonance nucleus: multiplicity light nucleus: production Computer Science Applications Baryon baryon High Energy Physics - Phenomenology resonance: gas Automatic Keywords light nucleus: multiplicity quality [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] Nucleon |
Zdroj: | J.Phys.Conf.Ser. 4th International Conference on Particle Physics and Astrophysics 4th International Conference on Particle Physics and Astrophysics, Oct 2018, Moscow, Russia. pp.012038, ⟨10.1088/1742-6596/1390/1/012038⟩ |
ISSN: | 1742-6588 |
Popis: | The multiplicities of light (anti)nuclei were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy $\sqrt{s_{NN}} =2.76$ TeV. Surprisingly, the hadron resonance gas model is able to perfectly describe their multiplicities under various assumptions. For instance, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. In this paper we assume the hard-core radius of nuclei consisting of $A$ baryons or antibaryons to follow the simple law $R(A) = R_b (A)^\frac{1}{3}$, where $R_b$ is the hard-core radius of nucleon. To implement such a relation into the hadron resonance gas model we employ the induced surface tension concept and analyze the hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The hadron resonance gas model with the induced surface tension allows us to verify different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the most successful description of hadrons can be achieved at the chemical freeze-out temperature $T_h=150$ MeV, while the one for all (anti)nuclei is $T_A=168.5$ MeV. Possible explanations of this high temperature of (anti)nuclei chemical freeze-out are discussed. Comment: 6 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |