On separate chemical freeze-outs of hadrons and light (anti)nuclei in high energy nuclear collisions

Autor: Sonia Kabana, A. I. Ivanytskyi, Denys Savchenko, Kyrill A. Bugaev, David Blaschke, Arkadiy Taranenko, E. G. Nikonov, Larissa Bravina, V. V. Sagun, Evgeny Zabrodin, B. E. Grinyuk, Gennady Zinovjev
Přispěvatelé: Université de Nantes (UN), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
History
hadron: resonance: gas
heavy ion: scattering
Proton
Hadron
nucleus: energy
gas: model
Nuclear Theory
FOS: Physical sciences
01 natural sciences
Resonance (particle physics)
freeze-out: chemical
Education
Surface tension
Nuclear physics
High Energy Physics - Phenomenology (hep-ph)
ALICE
surface tension
0103 physical sciences
freeze-out: temperature
010306 general physics
Nuclear Experiment
Physics
SIMPLE (dark matter experiment)
energy: high
010308 nuclear & particles physics
antibaryon
nucleon
temperature: high
Radius
hadron: resonance
nucleus: multiplicity
light nucleus: production
Computer Science Applications
Baryon
baryon
High Energy Physics - Phenomenology
resonance: gas
Automatic Keywords
light nucleus: multiplicity
quality
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Nucleon
Zdroj: J.Phys.Conf.Ser.
4th International Conference on Particle Physics and Astrophysics
4th International Conference on Particle Physics and Astrophysics, Oct 2018, Moscow, Russia. pp.012038, ⟨10.1088/1742-6596/1390/1/012038⟩
ISSN: 1742-6588
Popis: The multiplicities of light (anti)nuclei were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy $\sqrt{s_{NN}} =2.76$ TeV. Surprisingly, the hadron resonance gas model is able to perfectly describe their multiplicities under various assumptions. For instance, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. In this paper we assume the hard-core radius of nuclei consisting of $A$ baryons or antibaryons to follow the simple law $R(A) = R_b (A)^\frac{1}{3}$, where $R_b$ is the hard-core radius of nucleon. To implement such a relation into the hadron resonance gas model we employ the induced surface tension concept and analyze the hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The hadron resonance gas model with the induced surface tension allows us to verify different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the most successful description of hadrons can be achieved at the chemical freeze-out temperature $T_h=150$ MeV, while the one for all (anti)nuclei is $T_A=168.5$ MeV. Possible explanations of this high temperature of (anti)nuclei chemical freeze-out are discussed.
Comment: 6 pages, 1 figure
Databáze: OpenAIRE