Oscillation for a class of odd-order delay parabolic differential equations

Autor: Fuqi Yin, Zigen Ouyang, Shengfan Zhou
Rok vydání: 2005
Předmět:
Zdroj: Journal of Computational and Applied Mathematics. 175(2):305-319
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.05.014
Popis: Some sufficient conditions and some sufficient and necessary conditions are established for the oscillation of a class of odd-order delay parabolic differential equations of the form ∂Nu(x,t)/∂tN - a(t)Δu + Σi=1npi(x,t)u(x,t - σi) - Σj=1mqi(x,t)u(x,t - τj) + h(t)f(u(x,t - r1),...,u(x,t - rl)) = 0, (x, t) ∈ Ω × [t0, + ∞) ≡ G, t0 ∈ R, where N is an odd integer, Ω is a bounded domain in RM with a smooth boundary ∂Ω and Δ is the Laplacian operation with three different boundary conditions. To some extent, our results extended and improved the oscillatory results of some references. Meanwhile, we corrected some mistakes in a main conclusion of reference (J. Comput. Appl. Math. 147 (2002) 263).
Databáze: OpenAIRE