Charge recombination reactions in Photosystem II. 1. Yields, recombination pathways, and kinetics of the primary pair

Autor: Eberhard Schlodder, A. Kamlowski, B. Hillmann, F. van Mieghem, A.W. Rutherford, Klaus Brettel
Jazyk: angličtina
Rok vydání: 1995
Předmět:
Zdroj: Biochemistry 34 (1995)
Biochemistry, 34, 4798-4813
ISSN: 0006-2960
4798-4813
DOI: 10.1021/bi00014a038
Popis: Recombination reactions of the primary radical pair in photosystem II (PS II) have been studied in the nanosecond to millisecond time scales by flash absorption spectroscopy. Samples in which the first quinone acceptor (QA) was in the semiquinone form (QA-) or in the doubly reduced state (presumably QAH2) were used. The redox state of QA and the long-lived triplet state of the primary electron donor chlorophyll (3P680) were monitored by EPR. The following results were obtained at cryogenic temperatures (around 20 K). (1) the primary radical pair, P680+Pheo-, is formed with a high yield irrespective of the redox state of QA. (2) The decay of the primary pair is faster with QA- than with QAH2 and could be described biexponentially with t1/2 approximately 20 ns (approximately 65%)/150 ns (approximately 35%) and t1/2 approximately 60 ns (approximately 35%)/250 ns (approximately 65%), respectively. The different kinetics may be due to electrostatic and/or magnetic effects of QA- on charge recombination or due to conformational changes caused by the double reduction treatment. (3) The yield of the triplet state 3P680 was high both with QA- and QAH2. (4) The triplet decay was much faster with QA- [t1/2 approximately 2 microseconds (approximately 50%)/20 microseconds (approximately 50%)] than with QAH2 [t1/2 approximately 1 ms (approximately 65%)/3 ms (approximately 35%)]. The short lifetime of the triplet with QA- explains why it was not detected earlier. The mechanism of triplet quenching in the presence of QA- is not understood; however it may represent a protective process in PS II. (5) Almost identical data were obtained for PS II-enriched membranes from spinach and PS II core preparations from Synechococcus. Room temperature optical studies were performed on the Synechococcus preparation. In samples containing sodium dithionite to form QA- in the dark, EPR controls showed that multiple excitation flashes given at room temperature led to a decrease of the QA-Fe2+ signal, indicating double reduction of QA. During the first few flashes, QA- was still present in the large majority of the centers. In this case, the yield of the primary pair at room temperature was around 50%, and its decay could be described monoexponentially with t1/2 approximately 8 ns (a slightly better fit was obtained with two exponentials: t1/2 approximately 4 ns (approximately 80%)/25 ns (approximately 20%).(ABSTRACT TRUNCATED AT 400 WORDS)
Databáze: OpenAIRE