All functions are locally $s$-harmonic up to a small error
Autor: | Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Popis: | We show that we can approximate every function $f\in C^{k}(\bar{B_1})$ with a $s$-harmonic function in $B_1$ that vanishes outside a compact set. That is, $s$-harmonic functions are dense in $C^{k}_{\rm{loc}}$. This result is clearly in contrast with the rigidity of harmonic functions in the classical case and can be viewed as a purely nonlocal feature. To appear in J. Eur. Math. Soc. (JEMS) |
Databáze: | OpenAIRE |
Externí odkaz: |