All functions are locally $s$-harmonic up to a small error

Autor: Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Popis: We show that we can approximate every function $f\in C^{k}(\bar{B_1})$ with a $s$-harmonic function in $B_1$ that vanishes outside a compact set. That is, $s$-harmonic functions are dense in $C^{k}_{\rm{loc}}$. This result is clearly in contrast with the rigidity of harmonic functions in the classical case and can be viewed as a purely nonlocal feature.
To appear in J. Eur. Math. Soc. (JEMS)
Databáze: OpenAIRE