Study of gas adsorption/desorption properties in coals of Sabinas Basin on Mexico

Autor: Enciso-Cárdenas, J.J., Rodrígues, C., Martínez, L., Camacho-Ortegón, L.F., Lemos-De Sousa, M.
Přispěvatelé: CAMACHO-ORTEGON LF
Jazyk: Spanish; Castilian
Rok vydání: 2023
Předmět:
DOI: 10.5281/zenodo.8045426
Popis: The main objective of this research was to study the gas adsorption/desorption properties in Coal Bed Methane reservoirs located in the North-eastern Mexico, and to understand the behavior of unconventional reservoirs. The Servicio Geológico Mexicano (SGM) performed a sampling campaign. For the characterization, the SGM providing us 7 bituminous coal samples from the Sabinas Basin. The general characterization included: (1) immediate or primary moisture and ash analysis (2) elemental analysis for (C, H, O, N, and S) quantification, (3) petrographic analysis for organic matter type determination, (4) Rock-Eval®6 Pyrolysis, for oil potential generation determination. After results evaluation, 7 samples were selected, in order to develop adsorption/desorption CH4 tests by “Langmuir Isotherms” and to understand of parameters affecting the adsorption process. Using thermo-volumetric technique could be observed storage capacities of methane gas between 202.11 scf/ton (7.07m3/ton) and 364.76 scf/ton (10.47 m3/ton). The adsorption/desorption tests results, let us to identify the physical and chemical characteristics of the samples influencing the gas storage capacity in the coal. A general conclusion is given; the gas adsorption increases with the rank/maturity. Also, the influence of the maceral composition in the process of sorption is recognized, and the capacity of gas storage is closely related to the vitrinite content. According to Chalmers y Bustin (2008), and Zhang et al. (2012), the capacity of adsorption as TOC, increases in the next order: type I < type II < type III. This is attributed to high adsorption capacity of vitrinite, compared with other macerals types.
{"references":["Anderson, R.B., Bayer, J., Hofer, L.J.E., 1966. Equilibrium sorption studies of methane on Pittsburgh Seam and Pocahontas No. 3 Seam Coal. En: Gould, R.F., Ed., Advances in Chemistry Series 55 - Coal Science, American Chemical Society, Washington, D.C., p. 386-399.","Barboza, L.D., Santiago C.B., Izaguirre R.M.A., Martínez R.C., Gracia V.M., 1997. Carta Geológico-Minera Monclova, G14-4, Escala 1:250,000 Estados de Coahuila y Nuevo León. Servicio Geológico Mexicano.","Beamish, B.B., Crosdale, P.J., 1993. Characterising the methane sorption behaviour of banded coals in the Bowen Basin, Australia. En: Proceedings of the 1993 International Coalbed Methane Symposium, May 17-21, p. 145-150.","Chalmers, G.R.L., Bustin, R.M., 2008. Lower Cretaceous gas shales in northeastern British Columbia, part 1: geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology 56 (1), 1–21.","Clarkson, C.R., Bustin, R.M. 2000. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology 42, 241-271.","COMIMSA-GAN, 2010. Propuesta técnico-económica COMIMSA GAN para el desarrollo de una capacidad nacional para proveeduría de herramienta de corte de una máquina cortera y minero continuo. Corporación Mexicana de Investigación en Materiales, Grupo Acerero del Norte, Documento inédito, 16 p.","Corona-Esquivel, R., Tritlla J., Benavides-Muñoz, M.E., Piedad-Sánchez, N., Ferrusquía-Villafranca, I. 2006. Geología, estructura y composición de los principales yacimientos de carbón mineral en México. Boletín de la Sociedad Geológica Mexicana 57, 141-160."]}
Databáze: OpenAIRE