Double-walled carbon nanotube/zirconia composites: Preparation by spark plasma sintering, electrical conductivity and mechanical properties

Autor: Claude Estournès, Alicia Weibel, Dalya Al-Kattan, Alain Peigney, Christophe Laurent, Anne Kasperski
Přispěvatelé: Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
Rok vydání: 2015
Předmět:
Zdroj: Ceramics International
Ceramics International, Elsevier, 2015, vol. 41, pp. 13731-13738. ⟨10.1016/j.ceramint.2015.08.034⟩
ISSN: 0272-8842
DOI: 10.1016/j.ceramint.2015.08.034
Popis: International audience; Double-walled carbon nanotube/yttria-stabilized zirconia composite powders with carbon contents up to 6.3 wt% are prepared by soft covalent functionalization of carbon nanotubes (CNTs) followed by mixing with a nanometric yttria-stabilized zirconia (YSZ) powder. Composites are densified by spark plasma sintering (SPS). The composites present an electrical conductivity (0.09–0.88 S cm−1) which is among the highest values reported in the literature. Both the fracture strength (σf) and the single-edged notched beam fracture toughness (KIc) are measured for the first time on CNT/YSZ composites. The best mechanical properties (σf=694 MPa; KIc=7 MPa m1/2), obtained for low carbon contents (up to 1.2 wt%), are among the highest reported up to now. However, the fracture toughness is lower than that of the YSZ ceramic (KIc=10.3 MPa m1/2) whose mechanical properties are outstanding, taking into account its very fine microstructure.
Databáze: OpenAIRE