Bottom-up synthesis of multifunctional nanoporous graphene
Autor: | Mirko Panighel, Gustavo Ceballos, Marius V. Costache, Manuel Vilas-Varela, Aitor Mugarza, Bernhard Kretz, Diego Peña, Markos Paradinas, Aran Garcia-Lekue, Sergio O. Valenzuela, César Moreno |
---|---|
Přispěvatelé: | Xunta de Galicia, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, Eusko Jaurlaritza |
Rok vydání: | 2018 |
Předmět: |
Condensed Matter - Materials Science
Multidisciplinary Materials science 9. Industry and infrastructure Nanoporous business.industry Graphene Band gap Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences Nanotechnology 02 engineering and technology Electronic structure 010402 general chemistry 021001 nanoscience & nanotechnology Molecular sieve 01 natural sciences 0104 chemical sciences law.invention Membrane Semiconductor law Nanometre 0210 nano-technology business |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Recercat. Dipósit de la Recerca de Catalunya Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) |
Popis: | Nanosize pores can turn semimetallic graphene into a semiconductor and, from being impermeable, into the most efficient molecular-sieve membrane. However, scaling the pores down to the nanometer, while fulfilling the tight structural constraints imposed by applications, represents an enormous challenge for present top-down strategies. Here we report a bottom-up method to synthesize nanoporous graphene comprising an ordered array of pores separated by ribbons, which can be tuned down to the 1-nanometer range. The size, density, morphology, and chemical composition of the pores are defined with atomic precision by the design of the molecular precursors. Our electronic characterization further reveals a highly anisotropic electronic structure, where orthogonal one-dimensional electronic bands with an energy gap of ∼1 electron volt coexist with confined pore states, making the nanoporous graphene a highly versatile semiconductor for simultaneous sieving and electrical sensing of molecular species. This research was funded by the Centres de Recerca de Catalunya Programme–Generalitat de Catalunya, the Xunta de Galicia (Centro singular de investigacion de Galicia accreditation 2016–2019, ED431G/09), and the European Regional Development Fund. This research was supported by the Spanish Ministry of Economy and Competitiveness (under contract no. MAT2016-78293-C6-2-R, MAT2016-78293-C6-3-R, MAT2016-78293-C6-4-R, and MAT2016-75952-R and Severo Ochoa no. SEV-2013-0295); the Secretariat for Universities and Research, Knowledge Department of the Generalitat de Catalunya 2014 SGR 715, 2014 SGR 56, and 2017 SGR 827; the Basque Department of Education (contract no. PI-2016-1-0027); and the European Union’s Horizon 2020 research and innovation program under grant agreement 696656. C.M. was supported by the Agency for Management of University and Research grants (AGAUR) of the Catalan government through the FP7 framework program of the European Commission under Marie Curie COFUND action 600385. |
Databáze: | OpenAIRE |
Externí odkaz: |