The NIEP
Autor: | Johnson, Charles R., Marijuán López, Carlos, Paparella, Pietro, Pisonero Pérez, Miriam |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Operator Theory, Operator Algebras, and Matrix Theory ISBN: 9783319724485 UVaDOC. Repositorio Documental de la Universidad de Valladolid instname |
DOI: | 10.1007/978-3-319-72449-2_10 |
Popis: | Producción Científica The nonnegative inverse eigenvalue problem (NIEP) asks which lists of n complex numbers (counting multiplicity) occur as the eigenvalues of some n-by-n entry-wise nonnegative matrix. The NIEP has a long history and is a known hard (perhaps the hardest in matrix analysis?) and sought after problem. Thus, there are many subproblems and relevant results in a variety of directions. We survey most work on the problem and its several variants, with an emphasis on recent results, and include 130 references. The survey is divided into: a) the single eigenvalue problems; b) necessary conditions; c) low-dimensional results; d) sufficient conditions; e) appending 0’s to achieve realizability; f) the graph NIEP’s; g) Perron similarities; and h) the relevance of Jordan structure. Ministerio de Economía, Industria y Competitividad ( grant MTM2015-365764-C-1-P) |
Databáze: | OpenAIRE |
Externí odkaz: |