The NIEP

Autor: Johnson, Charles R., Marijuán López, Carlos, Paparella, Pietro, Pisonero Pérez, Miriam
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Operator Theory, Operator Algebras, and Matrix Theory ISBN: 9783319724485
UVaDOC. Repositorio Documental de la Universidad de Valladolid
instname
DOI: 10.1007/978-3-319-72449-2_10
Popis: Producción Científica
The nonnegative inverse eigenvalue problem (NIEP) asks which lists of n complex numbers (counting multiplicity) occur as the eigenvalues of some n-by-n entry-wise nonnegative matrix. The NIEP has a long history and is a known hard (perhaps the hardest in matrix analysis?) and sought after problem. Thus, there are many subproblems and relevant results in a variety of directions. We survey most work on the problem and its several variants, with an emphasis on recent results, and include 130 references. The survey is divided into: a) the single eigenvalue problems; b) necessary conditions; c) low-dimensional results; d) sufficient conditions; e) appending 0’s to achieve realizability; f) the graph NIEP’s; g) Perron similarities; and h) the relevance of Jordan structure.
Ministerio de Economía, Industria y Competitividad ( grant MTM2015-365764-C-1-P)
Databáze: OpenAIRE