Higher-order total variation bounds for expectations of periodic functions and simple integer recourse approximations

Autor: Maarten H. van der Vlerk, Niels van der Laan, Ward Romeijnders
Přispěvatelé: Research programme OPERA
Rok vydání: 2018
Předmět:
Zdroj: Computational Management Science, 15(3-4), 325-349. SPRINGER HEIDELBERG
ISSN: 1619-6988
1619-697X
DOI: 10.1007/s10287-018-0315-z
Popis: We derive bounds on the expectation of a class of periodic functions using the total variations of higher-order derivatives of the underlying probability density function. These bounds are a strict improvement over those of Romeijnders et al. (Math Program 157:3-46, 2016b), and we use them to derive error bounds for convex approximations of simple integer recourse models. In fact, we obtain a hierarchy of error bounds that become tighter if the total variations of additional higher-order derivatives are taken into account. Moreover, each error bound decreases if these total variations become smaller. The improved bounds may be used to derive tighter error bounds for convex approximations of more general recourse models involving integer decision variables.
Databáze: OpenAIRE