Semi-numerical absolute factorization of polynomials with integer coefficients
Autor: | David Rupprecht |
---|---|
Jazyk: | angličtina |
Předmět: |
Polynomial
Algebra and Number Theory Galois group Factorization of polynomials over finite fields Polynomials Algebra Generic polynomial Classical orthogonal polynomials Algorithm Computational Mathematics Factorization Factorization of polynomials ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Mathematics Resolvent |
Zdroj: | Journal of Symbolic Computation. (5):557-574 |
ISSN: | 0747-7171 |
DOI: | 10.1016/S0747-7171(02)00011-1 |
Popis: | In this paper, we propose a semi-numerical algorithm for computing absolute factorization of multivariate polynomials. It is based on some properties appearing after a generic change of coordinate. Using numerical computation, Galois group action and rational approximation, this method provides an efficient probabilistic algorithm for medium degrees. Two implementations are presented and compared to other algorithms. |
Databáze: | OpenAIRE |
Externí odkaz: |