Mots Sturmiens et infiniment désubstituables acceptés par un ω-automate

Autor: Béaur, Pierre, de Menibus, Benjamin Hellouin
Přispěvatelé: Graphes, Algorithmes et Combinatoire (GALaC), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Algorithmes, Apprentissage et Calcul (AAC), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: Given an $ω$-automaton and a set of substitutions, we look at which accepted words can also be defined through these substitutions, and in particular if there is at least one. We introduce a method using desubstitution of $ω$-automata to describe the structure of preimages of accepted words under arbitrary sequences of homomorphisms: this takes the form of a meta-$ω$-automaton. We decide the existence of an accepted purely substitutive word, as well as the existence of an accepted fixed point. In the case of multiple substitutions (non-erasing homomorphisms), we decide the existence of an accepted infinitely desubstitutable word, with possibly some constraints on the sequence of substitutions e.g. Sturmian words or Arnoux-Rauzy words). As an application, we decide when a set of finite words codes e.g. a Sturmian word. As another application, we also show that if an $ω$-automaton accepts a Sturmian word, it accepts the image of the full shift under some Sturmian morphism.
Databáze: OpenAIRE