Response adaptation in the barn owl's auditory space map
Autor: | Hermann Wagner, Martin Singheiser, K. Pawlowsky, Roland Ferger |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Inferior colliculus Sound localization Male Physiology Computer science Speech recognition Action Potentials Interaural time difference Adaptation (eye) Space (commercial competition) Midbrain 03 medical and health sciences 0302 clinical medicine Animals Sound Localization Neurons biology General Neuroscience Barn-owl biology.organism_classification Strigiformes Inferior Colliculi 030104 developmental biology Acoustic Stimulation Auditory Perception Female psychological phenomena and processes 030217 neurology & neurosurgery |
Zdroj: | Journal of neurophysiology. 119(3) |
ISSN: | 1522-1598 |
Popis: | Response adaptation is the change of the firing rate of neurons induced by a preceding stimulus. It can be found in many sensory systems and throughout the auditory pathway. We investigated response adaptation in the external nucleus of the inferior colliculus (ICX) of barn owls ( Tyto furcata), a nocturnal bird of prey and specialist in sound localization. Individual neurons in the ICX represent locations in auditory space by maximally responding to combinations of interaural time and level differences (ITD and ILD). Neuronal responses were recorded extracellularly under ketamine-diazepam anesthesia. Response adaptation was observed in three double stimulation paradigms. In two paradigms, the same binaural parameters for both stimuli were chosen. A variation of the level of the second stimulus yielded a level increase sufficient to compensate for adaptation around 5 dB. Introducing a silent interstimulus interval (ISI) resulted in recovery from adaptation. The time course of recovery was followed by varying the ISI, and full recovery was found after an ISI of 50 ms. In a third paradigm, the ITD of the second stimulus was varied to investigate the representation of ITD under adaptive conditions. We found that adaptation led to an increased precision and improved selectivity while the best ITD was stable. These changes of representation remained for longer ISIs than were needed to recover from response adaptation at the best ITD. Stimuli with non-best ITDs could also induce similar adaptive effects if the neurons responded to these ITDs.NEW & NOTEWORTHY We demonstrate and characterize response adaptation in neurons of the auditory space map in the barn owl’s midbrain with acoustic double-stimulation paradigms. An increase of the second level by 5 dB compensated for the observed adaptive effect. Recovery from adaptation was faster than in upstream nuclei of the auditory pathway. Our results also show that response adaptation might improve precision and selectivity in the representation of interaural time difference. |
Databáze: | OpenAIRE |
Externí odkaz: |