Non‐integrality of some Steinberg modules

Autor: Dan Yasaki, Jeremy Miller, Peter Patzt, Jennifer C. H. Wilson
Rok vydání: 2020
Předmět:
Zdroj: Journal of Topology. 13:441-459
ISSN: 1753-8424
1753-8416
DOI: 10.1112/topo.12132
Popis: We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartments. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartments if and only if the ring is Euclidean. We also construct new cohomology classes in the top dimensional cohomology group of the special linear group of some quadratic imaginary number rings.
Comment: 17 pages. To appear in Journal of Topology
Databáze: OpenAIRE