A Substrate Trapping Approach Identifies Proteins Regulated by Reversible S-nitrosylation
Autor: | Tamar Ziv, Moran Benhar, Arie Admon, Pnina Weisman-Shomer, Shani Ben-Lulu |
---|---|
Rok vydání: | 2014 |
Předmět: |
Proteomics
Cellular homeostasis Biology Nitric Oxide Biochemistry Monocytes Cell Line Analytical Chemistry Nitric oxide Interferon-gamma Mice chemistry.chemical_compound Thioredoxins Animals Humans Cysteine Protein kinase A Molecular Biology S-Nitrosothiols Research Macrophages Nitrosylation Proteins S-Nitrosylation Cell biology HEK293 Cells chemistry Mutation Thioredoxin Signal transduction Protein Processing Post-Translational Signal Transduction |
Zdroj: | Molecular & Cellular Proteomics. 13:2573-2583 |
ISSN: | 1535-9476 |
DOI: | 10.1074/mcp.m114.038166 |
Popis: | Protein S-nitrosylation, the nitric oxide-mediated posttranslational modification of cysteine residues, has emerged as an important regulatory mechanism in diverse cellular processes. Yet, knowledge about the S-nitrosoproteome in different cell types and cellular contexts is still limited and many questions remain regarding the precise roles of protein S-nitrosylation and denitrosylation. Here we present a novel strategy to identify reversibly nitrosylated proteins. Our approach is based on nitrosothiol capture and enrichment using a thioredoxin trap mutant, followed by protein identification by mass spectrometry. Employing this approach, we identified more than 400 putative nitroso-proteins in S-nitrosocysteine-treated human monocytes and about 200 nitrosylation substrates in endotoxin and cytokine-stimulated mouse macrophages. The large majority of these represent novel nitrosylation targets and they include many proteins with key functions in cellular homeostasis and signaling. Biochemical and functional experiments in vitro and in cells validated the proteomic results and further suggested a role for thioredoxin in the denitrosylation and activation of inducible nitric oxide synthase and the protein kinase MEK1. Our findings contribute to a better understanding of the macrophage S-nitrosoproteome and the role of thioredoxin-mediated denitrosylation in nitric oxide signaling. The approach described here may prove generally useful for the identification and exploration of nitroso-proteomes under various physiological and pathophysiological conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |