Direct band-gap crossover in epitaxial monolayer boron nitride

Autor: Alex Summerfield, Guillaume Cassabois, Christopher J. Mellor, Peter H. Beton, Pierre Valvin, Bernard Gil, Laurence Eaves, Sergei V. Novikov, Tin S. Cheng, C. T. Foxon, Thomas Pelini, Christine Elias
Přispěvatelé: Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Nanostructures quantiques propriétés optiques (NQPO), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Faculty of Engineering [Nottingham], University of Nottingham, UK (UON), School of Physics and Astronomy [Nottingham], ANR-11-LABX-0014,GANEX,Réseau national sur GaN(2011)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
Photoluminescence
Materials science
Science
General Physics and Astronomy
02 engineering and technology
Two-dimensional materials
Epitaxy
Article
General Biochemistry
Genetics and Molecular Biology

law.invention
03 medical and health sciences
chemistry.chemical_compound
law
Boron nitridewideband gap semiconductors2D Materialsvan der Waals epitaxy
Monolayer
Graphite
lcsh:Science
Nanoscale materials
Multidisciplinary
Graphene
business.industry
General Chemistry
021001 nanoscience & nanotechnology
030104 developmental biology
chemistry
Boron nitride
[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Optoelectronics
Direct and indirect band gaps
lcsh:Q
0210 nano-technology
business
Molecular beam epitaxy
Zdroj: Nature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
Nature Communications
Nature Communications, Nature Publishing Group, 2019, 1 (1), pp.1. ⟨10.1038/s41467-019-10610-5⟩
ISSN: 2041-1723
DOI: 10.1038/s41467-019-10610-5⟩
Popis: Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus confirming a crossover to direct gap in the monolayer limit.
Insulating hexagonal boron nitride (hBN) is theoretically expected to undergo a crossover to a direct bandgap in the monolayer limit. Here, the authors perform optical spectroscopy measurements on atomically thin epitaxial hBN providing indications of the presence of a direct gap of energy 6.1 eV in the single atomic layer.
Databáze: OpenAIRE