Self-immobilizing Biocatalysts for fluidic Reaction Cascades

Autor: Bitterwolf, Patrick, Peschke, Theo, Maier, Manfred, Gallus, Sabrina, Burgahn, Teresa, Mittmann, Esther, Peng, Martin, Rabe, Kersten, Niemeyer, Christof
Přispěvatelé: SPhERe - 3rd International Symposium on Pharmaceutical Engineering Research, 25. - 27. September 2019
Jazyk: angličtina
Rok vydání: 2020
Předmět:
DOI: 10.24355/dbbs.084-202001220953-0
Popis: The industrial implementation of whole-cells and enzymes in flow biocatalysis microreactors is essential for the emergence of a biobased circular economy. Major challenges concern the efficient immobilization of delicate enzymes inside miniaturized reactors without compromising their catalytic activity. We describe the design and application of four different immobilization techniques including self-immobilizing whole-cells and purified enzymes on magnetic microbeads, as well as reactor modules manufactured by 3D printing of bioinks containing thermostable enzymes. To increase the volumetric activity of our microreactors we furthermore developed and applied self-assembling all-enzyme hydrogels with cofactor-regenerating capabilities. The resulting reactor formats have excellent operational stability times of > 14 days and maximum space-time yields of > 450 g product/L-1day-1 paving the way for mild and effective immobilization techniques of biocatalysts in microfluidic systems.
SPhERe Proceedings: 3rd International Symposium on Pharmaceutical Engineering Research
Databáze: OpenAIRE