Global Attractivity for Nonautonomous Delay-Differential Equations with Mixed Monotonicity and Two Delays

Autor: Hassan El-Morshedy, Alfonso Ruiz-Herrera
Rok vydání: 2022
Předmět:
Zdroj: Scopus
ISSN: 1572-9222
1040-7294
DOI: 10.1007/s10884-022-10163-0
Popis: In this paper we study the scalar delay differential equation $$\begin{aligned} x'(t)=\alpha (t) x(t-g_{1}(t)) f(a(t),x(t-g_{2}(t)))-\beta (t) x(t) \end{aligned}$$ x ′ ( t ) = α ( t ) x ( t - g 1 ( t ) ) f ( a ( t ) , x ( t - g 2 ( t ) ) ) - β ( t ) x ( t ) where f is decreasing in both arguments and the coefficients are positive and bounded. Sufficient conditions for the permanence and global attractivity for a fixed positive solution are derived. We apply our results to nonautonomous variants of Nicholson’s blowfly equation and the Beverton–Holt model.
Databáze: OpenAIRE