Global Attractivity for Nonautonomous Delay-Differential Equations with Mixed Monotonicity and Two Delays
Autor: | Hassan El-Morshedy, Alfonso Ruiz-Herrera |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Scopus |
ISSN: | 1572-9222 1040-7294 |
DOI: | 10.1007/s10884-022-10163-0 |
Popis: | In this paper we study the scalar delay differential equation $$\begin{aligned} x'(t)=\alpha (t) x(t-g_{1}(t)) f(a(t),x(t-g_{2}(t)))-\beta (t) x(t) \end{aligned}$$ x ′ ( t ) = α ( t ) x ( t - g 1 ( t ) ) f ( a ( t ) , x ( t - g 2 ( t ) ) ) - β ( t ) x ( t ) where f is decreasing in both arguments and the coefficients are positive and bounded. Sufficient conditions for the permanence and global attractivity for a fixed positive solution are derived. We apply our results to nonautonomous variants of Nicholson’s blowfly equation and the Beverton–Holt model. |
Databáze: | OpenAIRE |
Externí odkaz: |