New mixed finite elements for the discretization of piezoelectric structures or macro-fibre composites
Autor: | Astrid S. Pechstein, Martin Meindlhumer, Alexander Humer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
Materials science
Discretization Mechanical Engineering Numerical Analysis (math.NA) 02 engineering and technology 01 natural sciences Piezoelectricity Finite element method 010101 applied mathematics 020303 mechanical engineering & transports 0203 mechanical engineering FOS: Mathematics General Materials Science Fiber Mathematics - Numerical Analysis 0101 mathematics Macro Elasticity (economics) Composite material |
Popis: | We propose a new three-dimensional formulation based on the mixed tangential-displacement normal-normal-stress method for elasticity. In elastic tangential-displacement normal-normal-stress elements, the tangential component of the displacement field and the normal component of the stress vector are degrees of freedom and continuous across inter-element interfaces. Tangential-displacement normal-normal-stress finite elements have been shown to be locking-free with respect to shear locking in thin elements, which makes them suitable for the discretization of laminates or macro-fiber composites. In the current paper, we extend the formulation to piezoelectric materials by adding the electric potential as degree of freedom. |
Databáze: | OpenAIRE |
Externí odkaz: |