3D printing in palliative medicine: systematic review

Autor: Tjaša Kermavnar, Callum Guttridge, Niall J Mulcahy, Ed Duffy, Feargal Twomey, Leonard O'Sullivan
Rok vydání: 2023
Předmět:
DOI: 10.34961/researchrepository-ul.22360228.v1
Popis: BackgroundThree-dimensional printing (3DP) enables the production of highly customised, cost-efficient devices in a relatively short time, which can be particularly valuable to clinicians treating patients with palliative care intent who are in need of timely and effective solutions in the management of their patients’ specific needs, including the relief of distressing symptoms.MethodFour online databases were searched for articles published by December 2020 that described studies using 3DP in palliative care. The fields of application, and the relevant clinical and technological data were extracted and analysed.ResultsThirty studies were reviewed, describing 36 medical devices, including anatomical models, endoluminal stents, navigation guides, obturators, epitheses, endoprostheses and others. Two-thirds of the studies were published after the year 2017. The main reason for using 3DP was the difficulty of producing customised devices with traditional methods. Eleven papers described proof-of-concept studies that did not involve human testing. For those devices that were tested on patients, favourable clinical outcomes were reported in general, and treatment with the use of 3DP was deemed superior to conventional clinical approaches. The most commonly employed 3DP technologies were fused filament fabrication with acrylonitrile butadiene styrene and stereolithography or material jetting with various types of photopolymer resin.ConclusionRecently, there has been a considerable increase in the application of 3DP to produce medical devices and bespoke solutions in the delivery of treatments with palliative care intent. 3DP was found successful in overcoming difficulties with conventional approaches and in treating medical conditions requiring highly customised solutions.
Databáze: OpenAIRE