Cr-based sputtered decorative coatings for automotive industry

Autor: Nuno M. G. Parreira, Albano Cavaleiro, Sandra Carvalho, Jorge Ferreira, Edgar Carneiro, Todor Vuchkov, Martin Andritschky
Přispěvatelé: Universidade do Minho
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Materials
Volume 14
Issue 19
Materials, Vol 14, Iss 5527, p 5527 (2021)
Popis: The present work aims to study the impact of O and N addition on Cr-sputtered coatings on plastic (polycarbonate, PC) used in automobile parts, as a promisor alternative for auto part metallization, while eliminating the usage of toxic hexavalent chromium. The coatings were deposited using DC magnetron sputtering from a single pure Cr target in a reactive atmosphere (N2 and/or O2). The deposition of the coatings was performed maintaining the total pressure constant and close to 1 Pa by tuning Ar pressure while reactive gases were added. The target current density was kept at JW = 20 mA·cm−2. Structural characterization revealed a mixture of α-Cr, δ-Cr, β-Cr2N, and CrN crystalline structures as well as amorphous oxides. The coating hardness ranged from 9 GPa for the CrON coating to 15 GPa for the CrN coating. All deposited coatings showed a particularly good interface adhesion; adjusting the amount of O and N made it possible to tune the optical properties of the Cr-based coatings as desired. The promising results open future industrialization of sputtered Cr-based coatings for automotive industries.
This work was supported by COMPETE 2020 a Portuguese and European Union initiative through the Project POCI-01-0247-FEDER-042785, acronym “GREENCoat”. This research was sponsored by Norte2020, through European Social Fund (FSE), under the National Doctoral Program in “Surfaces Engineering and Protection”, NORTE-08-5369-FSE-000047. This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of Strategic Funding (co-financed via UIDB/00285/2020 and UIDB/04650/2020).
Databáze: OpenAIRE