Time stopping for Tsirelson’s norm
Autor: | Kevin Beanland, Michael Holt, Noah Duncan |
---|---|
Rok vydání: | 2018 |
Předmět: |
Discrete mathematics
Mathematics::Functional Analysis Banach space 021103 operations research General Mathematics 010102 general mathematics 0211 other engineering and technologies 02 engineering and technology 01 natural sciences Norm (mathematics) 0101 mathematics 46B03 Tsirelson's space Mathematics |
Zdroj: | Involve 11, no. 5 (2018), 857-866 |
ISSN: | 1944-4184 1944-4176 |
Popis: | Tsirelson’s norm [math] on [math] is defined as the limit of an increasing sequence of norms [math] . For each [math] let [math] be the smallest integer satisfying [math] for all [math] with [math] . We show that [math] is [math] . This is an improvement of the upper bound of [math] given by P. Casazza and T. Shura in their 1989 monograph on Tsirelson’s space. |
Databáze: | OpenAIRE |
Externí odkaz: |