Perfectly Parallel Fairness Certification of Neural Networks

Autor: Valentin Wüstholz, Maria Christakis, Fuyuan Zhang, Caterina Urban
Přispěvatelé: Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Analyse Statique par Interprétation Abstraite (ANTIQUE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Max Planck Institute for Software Systems (MPI-SWS), ConsenSys Diligence, This work was supported by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science)., Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria de Paris, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Caterina, Urban
Jazyk: angličtina
Rok vydání: 2019
Předmět:
FOS: Computer and information sciences
Computer Science - Machine Learning
Computer Science - Logic in Computer Science
[INFO.INFO-LO] Computer Science [cs]/Logic in Computer Science [cs.LO]
Fairness
Neural Networks
Computer science
Distributed computing
Abstract Interpretation
02 engineering and technology
Certification
Space (commercial competition)
Machine Learning (cs.LG)
Computer Science - Computers and Society
Software
Development (topology)
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-CY]Computer Science [cs]/Computers and Society [cs.CY]
020204 information systems
Computers and Society (cs.CY)
0202 electrical engineering
electronic engineering
information engineering

Safety
Risk
Reliability and Quality

Computer Science - Programming Languages
[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
Artificial neural network
business.industry
Static Analysis
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
020207 software engineering
Static analysis
Abstract interpretation
[INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
Logic in Computer Science (cs.LO)
[INFO.INFO-CY] Computer Science [cs]/Computers and Society [cs.CY]
Scalability
business
Programming Languages (cs.PL)
Zdroj: Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages, 2020, 4 (OOPSLA), pp.1-30. ⟨10.1145/3428253⟩
Proceedings of the ACM on Programming Languages, ACM, 2020, 4 (OOPSLA), pp.1-30. ⟨10.1145/3428253⟩
ISSN: 2475-1421
DOI: 10.1145/3428253⟩
Popis: International audience; Recently, there is growing concern that machine-learned software, which currently assists or even automates decision making, reproduces, and in the worst case reinforces, bias present in the training data. The development of tools and techniques for certifying fairness of this software or describing its biases is, therefore, critical. In this paper, we propose a perfectly parallel static analysis for certifying fairness of feed-forward neural networks used for classification of tabular data. When certification succeeds, our approach provides definite guarantees, otherwise, it describes and quantifies the biased input space regions. We design the analysis to be sound, in practice also exact, and configurable in terms of scalability and precision, thereby enabling pay-as-you-go certification. We implement our approach in an open-source tool called libra and demonstrate its effectiveness on neural networks trained on popular datasets.
Databáze: OpenAIRE