Neurotransmitter Involvement in Development and Maintenance of the Auditory Space Map in the Guinea Pig Superior Colliculus

Autor: Damian McCrossan, S. K. Thornton, N.J. Ingham, Deborah J. Withington
Rok vydání: 1998
Předmět:
Zdroj: Journal of Neurophysiology. 80:2941-2953
ISSN: 1522-1598
0022-3077
DOI: 10.1152/jn.1998.80.6.2941
Popis: Ingham, Neil J., Sally K. Thornton, Damian McCrossan, and Deborah J. Withington. Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus. J. Neurophysiol. 80: 2941–2953, 1998. The mammalian superior colliculus (SC) is a complex area of the midbrain in terms of anatomy, physiology, and neurochemistry. The SC bears representations of the major sensory modalites integrated with a motor output system. It is implicated with saccade generation, in behavioral responses to novel sensory stimuli and receives innervation from diverse regions of the brain using many neurotransmitter classes. Ethylene-vinyl acetate copolymer (Elvax-40W polymer) was used here to deliver chronically neurotransmitter receptor antagonists to the SC of the guinea pig to investigate the potential role played by the major neurotransmitter systems in the collicular representation of auditory space. Slices of polymer containing different drugs were implanted onto the SC of guinea pigs before the development of the SC azimuthal auditory space map, at ∼20 days after birth (DAB). A further group of animals was exposed to aminophosphonopentanoic acid (AP5) at ∼250 DAB. Azimuthal spatial tuning properties of deep layer multiunits of anesthetized guinea pigs were examined ∼20 days after implantation of the Elvax polymer. Broadband noise bursts were presented to the animals under anechoic, free-field conditions. Neuronal responses were used to construct polar plots representative of the auditory spatial multiunit receptive fields (MURFs). Animals exposed to control polymer could develop a map of auditory space in the SC comparable with that seen in unimplanted normal animals. Exposure of the SC of young animals to AP5, 6-cyano-7-nitroquinoxaline-2,3-dione, or atropine, resulted in a reduction in the proportion of spatially tuned responses with an increase in the proportion of broadly tuned responses and a degradation in topographic order. Thus N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors and muscarinic acetylcholine receptors appear to play vital roles in the development of the SC auditory space map. A group of animals exposed to AP5 beginning at ∼250 DAB produced results very similar to those obtained in the young group exposed to AP5. Thus NMDA glutamate receptors also seem to be involved in the maintenance of the SC representation of auditory space in the adult guinea pig. Exposure of the SC of young guinea pigs to γ-aminobutyric acid (GABA) receptor blocking agents produced some but not total disruption of the spatial tuning of auditory MURFs. Receptive fields were large compared with controls, but a significant degree of topographical organization was maintained. GABA receptors may play a role in the development of fine tuning and sharpening of auditory spatial responses in the SC but not necessarily in the generation of topographical order of the these responses.
Databáze: OpenAIRE