Anaerobic ammonia-oxidizing bacteria in tropical bioaugmented zero water exchange aquaculture ponds
Autor: | Valsamma Joseph, Bright Singh Isaac Sarojini, Ramya Ramankutty Nair, R. Boobal |
---|---|
Rok vydání: | 2020 |
Předmět: |
Operational taxonomic unit
Health Toxicology and Mutagenesis Population Aquaculture 010501 environmental sciences 01 natural sciences Biostimulation Bacteria Anaerobic chemistry.chemical_compound Bioremediation Ammonia RNA Ribosomal 16S Environmental Chemistry Anaerobiosis Nitrite Ponds education Phylogeny 0105 earth and related environmental sciences education.field_of_study Bacteria biology Water General Medicine biology.organism_classification Pollution chemistry Anammox Environmental chemistry Candidatus Scalindua Oxidation-Reduction |
Zdroj: | Environmental Science and Pollution Research. 27:10541-10552 |
ISSN: | 1614-7499 0944-1344 |
DOI: | 10.1007/s11356-020-07663-1 |
Popis: | Bioaugmented zero water exchange aquaculture production systems (ZWEAPS) maintained with minimal or no water exchange prevent the ammonia accumulation in the system, leading to environmental sustainability and biosecurity. The microbes in the bioaugmented ZWEAPS plays a major role in maintaining low levels of ammonia through ammonia oxidation and nitrite oxidation. The comprehensive understanding on anammox population in the systems will provide an insight on the environmental factors controlling the functional anammox bacterial communities for potential biostimulation and augmented ammonia removal in ZWEAPS. The sediment metagenome of such three tropical bioaugmented ZWE shrimp culture ponds were analysed to determine the diversity, distribution and abundance of anaerobic ammonia-oxidizing (anammox) bacteria based on hydrazine oxidoreductase (hzo) gene as a phylogenetic marker. The restriction fragment length polymorphism (RFLP) phylotypes from the clone libraries were identified with maximum distribution to Candidatus Kuenenia, as the dominant population in the study sites with high ammonia load followed by Candidatus Scalindua. The environmental factors associated with the abundance and diversity of the anammox population were analysed using RDA and Pearson correlation. The samples of final culturing period (75th day) of TCR-S ZWE pond was observed with the highest operational taxonomic unit (OTU)–based diversity, where comparatively higher ammonia (water 0.71 mg L−1 and sediment 1.21 mg L−1) was recorded among the study sites. The gene abundance of the anammox population ranged from 106 to 107 copies per gram of sediment, in spite of less diversity. The physiochemical factors such as ammonia, nitrite, redox potential and the total organic carbon indicated a strong and positive correlation to the abundance and distribution of the anammox population, which highlights the importance of anammox communities and the potential of biostimulation for ammonia removal in the aquaculture systems. |
Databáze: | OpenAIRE |
Externí odkaz: |