Statistical requirements for noise mapping based on mobile measurements using bikes
Autor: | Jordi Romeu, Arnaud Can, Pierre Aumond, G. Quintero, A. Balastegui |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica, Universitat Politècnica de Catalunya. LEAM - Laboratori d'Enginyeria Acústica i Mecànica, Laboratorio de Ingeniería Acústica y Mecánica, parent, Unité Mixte de Recherche en Acoustique Environnementale (UMRAE ), Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)-Université Gustave Eiffel, Polytechnic University of Catalonia |
Rok vydání: | 2019 |
Předmět: |
Soroll -- Mesurament
BICYCLETTE Acoustics and Ultrasonics Mean squared error Computer science MOBILE SAMPLING Interval (mathematics) 010501 environmental sciences NOISE MAPPING 01 natural sciences Soroll urbà [SPI]Engineering Sciences [physics] Circulació urbana -- Soroll -- Aspectes ambientals Noise--Measurement 0103 physical sciences City traffic--Environmental aspects Reference noise DYNAMIC NOISE MODELING Sampling (Statistics) 010301 acoustics CARTOGRAPHIE 0105 earth and related environmental sciences [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] Desenvolupament humà i sostenible [Àrees temàtiques de la UPC] Sampling (statistics) Function (mathematics) Traffic flow Grid EXPOSURE ASSESSMENT MODELISATION BRUIT Noise Noise mapping City noise Exposure assessment Mostreig (Estadística) Algorithm Mobile sampling Dynamic noise modeling |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname Applied Acoustics Applied Acoustics, Elsevier, 2019, pp.271-278. ⟨10.1016/j.apacoust.2019.07.020⟩ |
ISSN: | 0003-682X |
DOI: | 10.1016/j.apacoust.2019.07.020 |
Popis: | This research presents a modeling framework that allows checking the statistical requirements for producing noise maps based on mobile measurements. First, a sound field of reference is created based on a micro-simulation traffic modeling coupled with acoustic modeling, which outputs sound levels each second on a grid of receivers. The aggregated indicators ( L Aeq ) calculated from this sound field serve then as reference. Mobile targets performing measurements evolve within the simulation, aiming to estimate these indicators. The difference between the reference noise map and the one generated by the moving receivers, characterized by the Root Mean Square Error (RMSE), is computed for different aggregation radius of mobile receivers, and as a function of the number of passes-by and to the distance to its nearest cross street. It is observed that the mobile sampling is actually possible and the RMSE can be reduced by setting an optimal aggregation radius and a minimum number of passes-by. With the optimal parameters, 95% of the mobile samples fall within an estimation error interval of [−3.0, 2.2] dBA from the reference. It is also shown that the distance to the nearest cross street affects the estimation error depending on the traffic flow, producing a RMSE greater than 2 dB for distances lower than 30 m. |
Databáze: | OpenAIRE |
Externí odkaz: |