Magneto‐chiral anisotropy: From fundamentals to perspectives

Autor: Elizabeth A. Hillard, Cyrille Train, Matteo Atzori, Geert L. J. A. Rikken, Narcis Avarvari
Přispěvatelé: Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), MOLTECH-Anjou, Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), This work was supported by the National Agency for Research (ANR) through the PRC 15-CE29-0006-01 (ChiraMolCo), PRC 20-CE06-0023-01 (SECRETS), PRC 19CE09-0018 (MaChiNaCo), PRC 18-CE09-0032 (MONAFER), the CNRS and the Universities of Angers, Bordeaux, and the Université Grenoble Alpes. We would like to gratefully acknowledge all the collaborators who have contributed to the works described here., ANR-15-CE29-0006,ChiraMolCo,Conducteurs Moléculaires Chiraux(2015), ANR-18-CE09-0032,MONAFER,Approche Moléculaire de composés multiferroïques nanostructurés(2018), ANR-20-CE06-0023,SECRETS,Conducteurs mono-composants pour des effts induits par la chiralité(2020), ANR-19-CE09-0018,MaChiNaCo,Nanocomposites hélicoïdaux pour l'induction de dichroïsme magnéto-chiral(2019), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Chirality
Chirality, Wiley, 2021, 33 (12), pp.844-857. ⟨10.1002/chir.23361⟩
Chirality, 2021, 33 (12), pp.844-857. ⟨10.1002/chir.23361⟩
ISSN: 0899-0042
1520-636X
DOI: 10.1002/chir.23361⟩
Popis: International audience; The interplay between chirality and magnetic fields gives rise to a cross effect referred to as magnetochiral anisotropy (MChA), which can manifest itself in different physical properties of chiral magnetized materials. The first experimental demonstration of MChA was by optical means with visible light. Further optical manifestations of MChA have been evidenced across most of the electromagnetic spectrum, from terahertz to X-rays. Moreover, exploiting the versatility of molecular chemistry towards chiral magnetic systems, many efforts have been made to identify the microscopic origins of optical MChA, necessary to advance the effect towards technological applications. In parallel, the replacement of light by electric current has allowed the observation of non-reciprocal electrical charge transport in both molecular and inorganic conductors as a result of electrical magneto-chiral anisotropy (eMChA). MChA in other domains such as sound propagation and photo-and electro-chemistry are still in their infancy, with only a few experimental demonstrations, and offer wide perspectives for further studies with potentially large impact, like the understanding of the homochirality of life. After a general introduction to magneto-chiral anisotropy, we give a complete review of all these phenomena, particularly during the last decade.
Databáze: OpenAIRE