Existence and Regularity of Minimizers of Nonconvex Functionals Depending onuand ∇u
Autor: | Pietro Celada |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | Journal of Mathematical Analysis and Applications. 230(1):30-56 |
ISSN: | 0022-247X |
DOI: | 10.1006/jmaa.1998.6163 |
Popis: | We consider variational problems of the form min ∫ Ω [f(Δu(x)) + g(x, u(x))]dx: u ∈ u 0 + H 1 0 (Ω) , wheref: R N → [0, ∞] is a possibly nonconvex function with quadratic growth at infinity andg(x, u) is Lipschitz continuous and strictly increasing (decreasing) inu. We prove the existence and local Lipschitz regularity of solutions for every boundary datumu0 ∈ H1(Ω) ∩ L∞(Ω) on the basis of the structure of the epigraph of the convex envelope off. |
Databáze: | OpenAIRE |
Externí odkaz: |