Finiteness results concerning algebraic power series
Autor: | Julie Decaup, Guillaume Rond, Fuensanta Aroca |
---|---|
Přispěvatelé: | Instituto de Matematicas (UNAM), Universidad Nacional Autónoma de México (UNAM) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Power series
Pure mathematics [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] Field (mathematics) Commutative Algebra (math.AC) 01 natural sciences Mathematics - Algebraic Geometry 0103 physical sciences ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION FOS: Mathematics Filtration (mathematics) Number Theory (math.NT) 0101 mathematics Algebraic number Algebraic Geometry (math.AG) ComputingMilieux_MISCELLANEOUS Mathematics Ring (mathematics) Algebra and Number Theory Series (mathematics) Mathematics - Number Theory 010102 general mathematics Algebraic variety Mathematics - Commutative Algebra Bounded function 010307 mathematical physics |
Zdroj: | Journal of Pure and Applied Algebra Journal of Pure and Applied Algebra, Elsevier, 2021, 225 (6), pp.106627. ⟨10.1016/j.jpaa.2020.106627⟩ |
ISSN: | 0022-4049 |
Popis: | We construct an explicit filtration of the ring of algebraic power series by finite dimensional constructible sets, measuring the complexity of these series. As an application, we give a bound on the dimension of the set of algebraic power series of bounded complexity lying on an algebraic variety defined over the field of power series. 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |