Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing

Autor: Shobha Ghosh, Jinghua Bie, Jing Wang, Stephanie A. Marqueen, Bin Zhao
Rok vydání: 2012
Předmět:
Zdroj: American Journal of Physiology-Cell Physiology. 303:C427-C435
ISSN: 1522-1563
0363-6143
DOI: 10.1152/ajpcell.00103.2012
Popis: Cholesteryl ester (CE) hydrolysis is the rate-limiting step in the removal of free cholesterol (FC) from macrophage foam cells, and several enzymes have been identified as intracellular CE hydrolases in human macrophages. We have previously reported the antiatherogenic role of a carboxylesterase [carboxylesterase 1 (CES1)], and the objective of the present study was to determine the contribution of CES1 to total CE hydrolytic activity in human macrophages. Two approaches, namely, immune depletion and short hairpin (sh)RNA-mediated knockdown, were used. Immuneprecipitation by a CES1-specific antibody resulted in a 70–80% decrease in enzyme activity, indicating that CES1 is responsible for >70% of the total CE hydrolytic activity. THP1-shRNA cells were generated by stably transfecting human THP1 cells with four different CES1-specific shRNA vectors. Despite a significant (>90%) reduction in CES1 expression both at the mRNA and protein levels, CES1 knockdown neither decreased intracellular CE hydrolysis nor decreased FC efflux. Examination of the underlying mechanisms for the observed lack of effects of CES1 knockdown revealed a compensatory increase in the expression of a novel CES, CES3, which is only expressed at
Databáze: OpenAIRE