Model-order reduction for nonlinear dynamics including nonlinearities induced by damage

Autor: Alexandre Daby-Seesaram, Amélie Fau, Pierre Étienne Charbonnel, David Néron
Přispěvatelé: Laboratoire de mécanique et technologie (LMT), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Service d'Etudes Mécaniques et Thermiques (SEMT), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: 6th ECCOMAS Young Investigators Conference
6th ECCOMAS Young Investigators Conference, Jul 2021, Valence, Spain. ⟨10.4995/YIC2021.2021.13255⟩
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
DOI: 10.4995/YIC2021.2021.13255⟩
Popis: [EN] Assessing the probability of failure of a structure under seismic loading requires the simulation of a great number of similar nonlinear computations. A model-order reduction strategy is proposed for decreasing the computational cost associated to each nonlinear simulation. In this contribution, the method is illustrated to evaluate the damage evolution in a primary circuit piping component of a pressurized water reactor, subjected to accidental seismic input. Piping components are described with a damageable elasto-plastic material exhibiting a preliminary damage pattern.
The SEISM Institute is deeply acknowledged for funding this research activity. This work is hosted by the NARSIS Project that is also thanked for giving the opportunity to study such thematic.
Databáze: OpenAIRE