Convergence properties of nets of operators
Autor: | Dorian Popa, Ioan Raşa, Fadel Nasaireh |
---|---|
Rok vydání: | 2018 |
Předmět: |
Discrete mathematics
convergence Control and Optimization Algebra and Number Theory Structure (category theory) Spectral theorem Operator theory positive operators Set (abstract data type) Korovkin-type theorems Convergence (routing) algebra of complex functions 41A30 Algebraic number 41A36 Modes of convergence Analysis Mathematics |
Zdroj: | Ann. Funct. Anal. 9, no. 1 (2018), 1-7 |
ISSN: | 2008-8752 |
DOI: | 10.1215/20088752-2017-0018 |
Popis: | We consider nets $(T_{j})$ of operators acting on complex functions, and we investigate the algebraic and the topological structure of the set $\{f:T_{j}(|f|^{2})-|T_{j}f|^{2}\rightarrow 0\}$ . Our results extend and improve some known results from the literature, which are connected with Korovkin’s theorem. Applications to Abel–Poisson-type operators and Bernstein-type operators are given. |
Databáze: | OpenAIRE |
Externí odkaz: |