Convergence properties of nets of operators

Autor: Dorian Popa, Ioan Raşa, Fadel Nasaireh
Rok vydání: 2018
Předmět:
Zdroj: Ann. Funct. Anal. 9, no. 1 (2018), 1-7
ISSN: 2008-8752
DOI: 10.1215/20088752-2017-0018
Popis: We consider nets $(T_{j})$ of operators acting on complex functions, and we investigate the algebraic and the topological structure of the set $\{f:T_{j}(|f|^{2})-|T_{j}f|^{2}\rightarrow 0\}$ . Our results extend and improve some known results from the literature, which are connected with Korovkin’s theorem. Applications to Abel–Poisson-type operators and Bernstein-type operators are given.
Databáze: OpenAIRE