Maximal singular integral operators acting on noncommutative $$L_p$$-spaces
Autor: | Guixiang Hong, Xudong Lai, Bang Xu |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematische Annalen. 386:375-414 |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-022-02401-z |
Popis: | In this paper, we study the boundedness theory for maximal Calder\'on-Zygmund operators acting on noncommutative $L_p$-spaces. Our first result is a criterion for the weak type $(1,1)$ estimate of noncommutative maximal Calder\'on-Zygmund operators; as an application, we obtain the weak type $(1,1)$ estimates of operator-valued maximal singular integrals of convolution type under proper {regularity} conditions. These are the {\it first} noncommutative maximal inequalities for families of linear operators that can not be reduced to positive ones. For homogeneous singular integrals, the strong type $(p,p)$ ($1 Comment: 34 pages |
Databáze: | OpenAIRE |
Externí odkaz: |