Maximal singular integral operators acting on noncommutative $$L_p$$-spaces

Autor: Guixiang Hong, Xudong Lai, Bang Xu
Rok vydání: 2022
Předmět:
Zdroj: Mathematische Annalen. 386:375-414
ISSN: 1432-1807
0025-5831
DOI: 10.1007/s00208-022-02401-z
Popis: In this paper, we study the boundedness theory for maximal Calder\'on-Zygmund operators acting on noncommutative $L_p$-spaces. Our first result is a criterion for the weak type $(1,1)$ estimate of noncommutative maximal Calder\'on-Zygmund operators; as an application, we obtain the weak type $(1,1)$ estimates of operator-valued maximal singular integrals of convolution type under proper {regularity} conditions. These are the {\it first} noncommutative maximal inequalities for families of linear operators that can not be reduced to positive ones. For homogeneous singular integrals, the strong type $(p,p)$ ($1
Comment: 34 pages
Databáze: OpenAIRE